Как уменьшить степень сжатия двигателя?

Степень сжатия, как понизить.

Опции темы
  • Подписаться на эту тему…
  • Поиск по теме

    Степень сжатия, как понизить.

    Имеем овощной 2.0 G4GC (это хундай купе), компрессор,планируется давка 0.7 бара.
    Сейчас степень сжатия 10.1, нуно нонизить до 8 — 8.5 я правильно понимаю. что б я не попал на ремнт двигателя.
    Куплена доп. прокладка под башку, достаточно ли этого.

    СТОИТ ЛИ ЗАМОРАЧИВАТЬСЯ С ПРОТОЧКОЙ ПОРШНЕЙ, или нужно сделать бутер)))? я не знаю. Уважаемые Гуру)))) подскажите

    Гильзовка двигателя и кованные поршни тебе помогут 🙂

    по моему проще купить мотор от эволюшена или рвр

    и куда на том моторе на переднем приводе? )

    10 не много, дуй в зажатый 0.5-0.7 это если в режиме форсирования.
    ну а на постоянку имхо 0.4 не развалится

    Просто кузову сейчас делается глубокий стайлинг с расширением, просто хотелось немного привести в соответствие внешность и характеристики мотора. 143пони -это очень мало.

    Атор, ну а как же mazda mps на переднем приводе форды , сивики туперы. ведь больше 200 на переднем.

    У нас в клубе есть купеха 330л.с. на переднем..ничего, ездит же.

    И во сколько мне это обойдется с коробкой мозгами косой. проблемы при постановке. НАМИ. нет.

    спасибо,я слышал что не страшно, но опасаюсь. потомучто не хочу ничего трогать в двиге, все на стоке.
    а если я поставлю 2 прокладки, какая степень станет не в курсе.

    2 прокладки я бы не стал. точи одну толстую раз так хочешь лезть в мотор.

    Поразглядывайте поршни.
    Вам лунки порядка 7 см3 просятся под впускными клапанами.

    я в 9.8 дую 0.5 стабильно+обычная метал прокладка

    Последний раз редактировалось lДенис 68; 19.11.2009 в 13:44 .

    и с КС бошки куба 3-4 слезет

    Как раз и получается в зависимости от толщины прокладки .
    А посчитать можно после проливки головы .

    Звенеть будет и прокладку выносить. По жаре вообще один раз бустанет и приехали. Либо газ, либо снижать сж, либо 0.3 дуть.

    если все нормально отсроено- не будет.
    год ездил на 0.5 но не в 10 а в 11.5 и смесь не к 10, а 11.8-12.5
    в качестве эксперимента. ниче не развалилось,и никаких признаков хронической детонации после вскрытия. мотору 100тык.
    по гоороду на 95 на покатушки на 98
    и все енто на пластилиновом 2з

    Ну вот поглядим чо у автора выйдет. да и 11.8 эт смесь конеш к детонации менее склонная, оно спасает, но недолго.

    ну понятное дело что все нужно настраивать.
    2з например от детонации разваливается почти на очке и это со степенью 11.5, но правильно настроенный.
    промешленные чаргер наборы блиц греди дуют до 0.6. так что детонация детонацией,прочность прочностью но первое это настройка

    Согласен. Но тут ещё от валов сильно зависит, от перекрытия и способности системы быстро избавиться от тепла в выхлоп. Тупо перекидывание на 1 зуб выпускного вала решило проблему детонации практически, а нормальный выхлоп её вообще убрал и позволил сделать +7-9 градусов по таблице. Так что слишком дофига неизвестных.

    это уже лезть в мотор.
    мой рецепт после тщательной проверки двига,
    я бы задул пол очка без зазрения совести+настройка смеси(11.5 в пике),зажигания,системы изменения фаз по макс расходу,свечи похолоднее,топливо получше.
    будет жить

    Как уменьшить степень сжатия двигателя?

    Как рассчитать и изменить степень сжатия двигателя

    Одним из главнейших технических показателей автомобильного мотора является коэффициент сжатия. Он показывает соотношение разницы между объёмом свободного участка над цилиндровым поршнем и под ним в крайних его положениях.

    Что такое степень сжатия двигателя

    Условно величину сжатия представляют и как соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно эта степень обусловлена конструкцией автомобильного двигателя, и может быть высокой или низкой.

    Перед непосредственным процессом воспламенения горючей смеси, поршни сжимают топливо до определённого объёма. Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии проектирования. Узнав количественное соотношение данной величины к объёму камеры сгорания, можно делать различные выводы.

    На бензиновых силовых установках показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия двигателя или ССД, тем больше удельная мощность мотора. Однако при сильном увеличении данного показателя снижается ресурс агрегата, особенно при заправке низкосортным бензином. На дизельных моторах, ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.

    В бензиновые двигатели с увеличенной до 12 единиц степенью сжатия нельзя лить ничего, кроме АИ-98 Премиум. Очевидно, что это существенно удорожает расходы на топливо.

    На что она влияет

    ССД непосредственно определяет объём работы, произведённой ДВС. Чем изначально выше рассчитана степень сжатия, тем продуктивнее будет воспламенение. Пропорционально увеличится и отдача мотора. Вспомним, как разработчики в 90-е годы старались повышать этот показатель, полностью не модернизируя двигатель. Таким способом они конкурировали между собой, делая агрегаты мощнее, и не затрачивая при этом много средств. Но что самое интересное — моторы в этом случае не потребляли больше горючего, а даже становились экономнее.

    Однако всему есть предел, и как было сказано выше, чересчур высокий коэффициент приводит к снижению ресурса ДВС. Почему это происходит? Дело в том, что при значительном сжатии топливная смесь начинает самопроизвольно детонировать, взрываться. Особенно это затрагивает агрегаты на бензине, поэтому здесь данный коэффициент имеет строгое ограничение.

    Помните, что применение низкооктанового топлива становится причиной детонации на агрегатах с повышенной ССД. И наоборот, высокооктановое горючее может не позволять двигателю полностью раскрываться, если будет использовано в агрегатах с низким коэффициентом сжатия. По этой причине оба параметра должны соответствовать. Подробнее в таблице ниже.

    Отличие степени сжатия от компрессии

    Степень сжатия двигателя не является компрессией. Они полностью различаются, хотя многие их путают. Коэффициент, о котором идёт речь в статье, не раскрывает значение оптимального давления ТВС перед возгоранием. Измеряется ССД лишь относительно, в соотношении к единице объёма камеры.

    Под компрессией принято понимать предельное значение сжатия, образуемого в камере сгорания, на конечном этапе давления горючей смеси. Данная величина априори не может быть относительной, поэтому её измеряют в абсолютных значениях — атм, кг/см2, бар.

    Степень сжатия и компрессия неразрывно связаны, но не идентичны. Показатель компрессии зависит не только от сжатия. На него оказывает влияние температура ДВС, наличие зазоров в приводных клапанах, состав топлива и многое другое.

    Расчет коэффициента сжатия

    Ввиду того, что желательно увеличивать степень сжатия до определённого значения, необходимо уметь рассчитывать этот показатель. К тому же это даст возможность избежать детонационных моментов, разрушающих силовой агрегат изнутри в процессе форсирования.

    Таким образом, необходимость в измерении этого показателя требуется в таких случаях, как:

    • форсировка мотора;
    • подгонка под топливо с другим АИ или для метанового топлива с октановым числом 120;
    • послеремонтная корректировка.

    Турбированные моторы

    На турбомоторах расчёт коэффициента сжатия отличается. Это объясняется наличием наддува воздуха. Поэтому в этом случае величину, полученную в ходе вычислений, умножают на показатель турбокомпрессора.

    Кроме того, при вычислении степени сжатия турбированных моторов учитывается не только давление наддува, но и показатель эффективного сжатия, климатические изменения и многое другое. В данном случае процесс значительно усложняется по сравнению с измерениями на атмосферном двигателе.

    Пример подсчета

    Вот как выглядит общепринятая расчётная формула для автомобильного ДВС: «ССД = (РО+ОКС)/ОКС». Степень сжатия здесь отмечена как «ССД», рабочий объём цилиндра — «РО», а объём камеры сгорания — «ОКС».

    Для расчёта «РО» нужно в первую очередь разложить единый объём двигателя или литраж на количество используемых цилиндров. К примеру, литраж мотора «четвёрки» — 1997 см3. Для определения ёмкости одного цилиндра, надо 1997 разделить на 4. Получится около 499 см3.

    Для вычисления параметра «ОКС» специалисты пользуются проградуированной в см3 трубкой или пипеткой. Под камерой подразумевается место, где непосредственно происходит возгорание горючего. Камеру заправляют, а затем измеряют объём с помощью жидкостной бюретки. Если нет градуированной трубочки, можно жидкость выкачать с помощью шприца, а затем измерить в мерной посуде или на весах. В этом случае желательно для расчёта использовать не бензин или солярку, а чистую воду, так как её удельный вес более соотносим к объёму в см3.

    Внимание! Для точного измерения «ОКС» дополнительно приплюсовывается объём толщины прокладки ГБЦ, учитывается форма днища поршней и другие особенности. Поэтому расчёт этой величины рекомендуется доверить специалистам.

    Как увеличить степень сжатия двигателя

    Если необходимо увеличить данный показатель, используют несколько способов:

    • расточка блока и установка поршней с большим диаметром;
    • уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.

    Нельзя забывать, что в некоторых случаях потребуется инсталляция модернизированных поршней. Это делается, чтобы исключить такое нежелательное последствие, как встреча поршней с клапанами. В частности, на элементах увеличивают выемки клапанов. Также в обязательном порядке корректируются заново фазы газораспределения.

    Интересно, что лучше всех раскрыли потенциал степени сжатия ДВС японские производители. В то время как европейские автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив изменяемую величину. Но как это возможно без детонационных моментов? Всё оказалось просто. Оказывается, нужно охладить камеру, где происходит возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не обязательно для этого использовать прохладный воздух: достаточно модернизировать систему выпуска.

    Приём, давно известный ещё по гоночным движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.

    Секрет японской формулы, согласно которой можно без опаски сжимать горючую смесь, имеет строго математическое соотношение. Так, если процент выхлопа снизить в 2 раза, ССД можно поднимать на 3 единицы, но не больше. Если же при этом ещё и охлаждать воздух, поступающий в цилиндры, можно приплюсовать ещё одну единицу.

    Однако для реализации данного метода нужно будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру, изменить длину поршневого хода посредством компьютерного вмешательства.

    Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.

    Таким образом, передовая система изменения ССД позволяет вдвое уменьшать литраж мотора, сохраняя при этом мощность и динамические характеристики.

    Курс на увеличение степени сжатия двигателя наблюдался и в середине 20 века в США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась в пределах 11-13 единиц. Но работали они только на очень качественном, высокооктановом топливе, получаемом путём этилирования. После того как этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя сжатия.

    Важно знать, что прирост мощности будет наиболее заметен на двигателях, штатно работающих на низкой степени сжатия. Например, моторы с показателем 8 единиц, доведённые до 10, выдадут больше мощности, чем агрегаты со стоковым параметром 11 единиц, форсированные до 12.

    Дефорсирование ДВС: для чего нужно и как осуществить

    Иногда бывает необходимо уменьшить показатель сжатия. В этом случае устанавливается дополнительная металлическая прокладка ГБЦ. Можно использовать две прокладки вместо одной, тем самым утолщая промежуток — объём камеры растёт за счёт высоты головки блока. Более сложный способ подразумевает укорочение поршня — удаление верхнего слоя на токарном станке.

    Дефорсирование двигателя, как правило, процедура вынужденная. В том числе это делается для снижения налоговых выплат или в целях увеличения ресурса агрегата. Как известно, моторы с низкой степенью сжатия дольше работают, меньше подвержены износу. Однако любой такой процесс усложняется законом, чтобы недобросовестные владельцы искусственно не занижали технические данные.

    Что касается снижения показателя сжатия на турбированных моторах, то здесь потребуется модернизация системы электрики с датчиками, всей поршневой группы и форсунок, если это дизельный агрегат.

    В отдельных случаях дефорсированию предпочитают свап, когда менее мощный контрактный мотор устанавливают вместо штатного.

    Зрим в корень: сказки про компрессию двигателя

    Компрессия — это вульгаризм. Правильно — давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива — для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.

    По мнению многих продвинутых автомобилистов, компрессия для мотора чуть ли не всё! Но так ли это?

    Компрессия и степень сжатия — одно и то же: сказка первая

    Нет, не так! Компрессия — это давление в цилиндре, степень сжатия — безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия — это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия — это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии — нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

    «Компрессия» — то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

    1 no copyright

    Поднял компрессию — увеличил мощность: сказка вторая

    Не совсем так. Компрессию можно поднять двумя способами — увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.

    Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором — на 9%. Здорово!

    А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, — на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2–3%, причем в зоне малых и средних оборотов. А на высоких — никакого эффекта.

    Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, — стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.

    Способ второй — уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.

    Сделали. Для нового мотора — всё нормально, для всех цилиндров компрессия 13,2. 13,4 бар. Для испорченного кольцами с большими зазорами — 10,8. 11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.

    Компрессия резко выросла, а мощность — нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее.

    2 no copyright

    Нет компрессии — сразу на капиталку: сказка третья

    Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?

    Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними. Но это — тема отдельной статьи.

    Чем выше компрессия, тем лучше: сказка четвертая

    Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.

    Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

    Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя — базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

    3 no copyright

    И совсем не сказка.

    Так на что же влияет компрессия? На многое! Главное — на пусковые свойства мотора, особенно при низких температурах.

    В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодном пуске только теоретически должно испаряться по пути в цилиндр. А реально — попадает туда в виде негорючих жидких капель.

    Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.

    Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю.

    Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой — наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» — дело в целом бесперспективное.

    Изменение степени сжатия

    После того как мы определились со степенью сжатия перед нами стоит вопрос как правильно добиться нужной нам степени сжатия. Для начала нужно рассчитать на сколько необходимо увеличить камеру сгорания. Это не сложно. Формула для вычисления степени сжатия имеет следующий вид:
    Ɛ=(VP+VB)/VB
    Где Ɛ— степень сжатия
    VP — рабочий объём
    VB — объём камеры сгорания

    Преобразовав уравнение можно получить формулу для вычисления камеры сгорания при известной степени сжатия.
    VB=VP1/Ɛ
    Где VP1 — объём одного цилиндра

    По этой формуле вычисляем объём имеющейся камеры сгорания и вычитаем из него объём желаемой (вычисленный по той же формуле), полученная разница и есть интересующее на значение на которое и нужно увеличить камеру сгорания.

    Существуют разнообразнве способы увеличения камеры сгорания но далеко не все из них верные. Камера сгорания современного автомобиля спроектирована таким образом, что при достижении поршнем ВМТ топливо воздушная смесь вытесняется к центру камеры сгорания. Это пожалуй самая действенная разработка препятствующая детонации.

    Самостоятельная доработка камеры в ГБЦ под силу далеко не многим. Это обусловлено тем, что вопервых вы можите нарушить спроектированную форму камеры, так же при доработке могут «вскрыться» стенки т.к. не известна их толщина. Так же не рекомендуется «расжимать мотор» толстыми прокладками т.к. Это нарушит процессы вытеснения в камере сгорания. Наиболее простым и правельным способом считается установка новых поршней в которых задан необходимый объём камеры. Для турбо-двигателя сферическая форма считается наиболее эффективной. Лучше использовать для этих целей специально разработанные и изготовленные поршни. Возможен вариант самостоятельной доработки стоковых поршней. Но сдесь нужно учесть что толщина дна поршня не должна быть меньше 6% от диаметра.

    Степень сжатия в турбо двигателе

    Одной из самых важных и пожалуй самой сложной задачей при проектировании турбодвигателя является принятие решения о степени сжатия. Этот параметр влияет на большое количество факторов в общей характеристике автомобиля. Мощность, экономичность, приёмистость, детонационная стойкость (параметр от которого сильно зависит эксплуатационная надёжность двигателя в целом), все эти факторы в значительной степени определяются степенью сжатия. Также это влияет на расход топлива и состав отработавших газов. В теории, степень сжатия для турбо-мотора рассчитать не составляет большого труда.

    Сначала разберём понятие «Сжатие» или «Геометрическая степень сжатия». Оно представляет собой отношение полного объёма цилиндра (рабочий объём плюс пространство сжатия, остающееся над поршнем при положении в верхней мёртвой точки (ВМТ)), к чистому пространству сжатия. Формула имеет следующий вид: Ɛ=(VP+VB)/VB

    Где Ɛ— степень сжатия
    VP — рабочий объём
    VB — объём камеры сгорания

    Не нужно забывать о существенных расхождениях между геометрической и фактической степенью сжатия даже на атмосферных моторах. В турбодвигателях к этим же процессам добавляется и предварительно сжатая компрессором смесь. На сколько фактически от этого увеличиться степень сжатия, видно из следующей формулы:
    Ɛeff=Egeom*k√(PL/PO)
    Где Ɛeff — эффективное сжатие
    Ɛgeom — геометрическая степень сжатия
    Ɛ=(VP+VB)/VB, PL — Давление наддува (абсолютное значение),
    PO — давление окружающей среды,
    k — адиабатическая экспонента (числовое значение 1,4)

    Эта упрощённая формула будет справедлива при условии, что температура в конце процесса сжатия для двигателей с наддувом и без наддува достигает одинакового значения. Иными словами, чем выше давление наддува, тем меньше возможное геометрическое сжатие. Итак, согласно нашей формуле для атмосферного двигателя со степенью сжатия 10:1 при давлении наддува 0.3 бара степень сжатия следует уменьшить до 8.3:1, при давлении 0.8 бара до 6.6:1. Но, слава богу, это теория. Все современные двигатели с турбонаддувом работают не с такими через мерно низкими значениями. Правильная степень сжатия для работы определяется сложными термодинамическими вычислениями и всесторонними испытаниями. Всё это из области высоких технологий и сложных расчётов, но много тюнинговых моторов собрано на основе некоторого опыта, как собственного, так и взятого за пример, от известных автомобильных производителей. Эти правила будут справедливы в большинстве случаев.

    Есть несколько важных факторов влияющих на расчёт степени сжатия и их нужно принимать во внимание при проектировании. Я перечислю наиболее важные. Конечно, это желаемый наддув, октановое число топлива, форма камеры сгорания, эффективность промежуточного охладителя, и, безусловно те мероприятия которые вы в состоянии провести по снижению температурной напряжённости в камере сгорания. Углом опережения зажигания (УОЗ) так же можно частично компенсировать возросшие нагрузки. Но это темы для отдельной разговора, и мы безусловно затронем их позже в следующих статьях.

    Как увеличить степень сжатия и что это дает

    Двигатели ВАЗ имеют различную степень сжатия. Например, на Ниве 4×4 степень сжатия мотора ВАЗ 21213 около 9,4. Большую степень сжатия (11) имеет более современный двигатель ВАЗ 21127, который ставится на Гранту, Калину и Приору. Разбираемся, что такое степень сжатия, зачем ее пытаются увеличить и стоит ли это делать.

    Что такое степень сжатия и как ее определить

    На что влияет степень сжатия

    Повышение степени сжатия в общем случае увеличивает мощность двигателя, повышает его КПД и способствует снижению расхода топлива.

    С другой стороны, увеличение степени сжатия способствует появлению детонации. Чтобы этого избежать, необходимо использовать бензин с более высоким октановым числом. Кроме этого при поднятии степени сжатия повышается токсичность отработавших газов и нагрузка на детали кривошипно-шатунного механизма.

    Истории наших читателей

    «Гребаный таз. «

    Всем привет! Меня зовут Михаил, сейчас расскажу историю о том, как мне удалось обменять двенашку на камри 2010г. Все началось с того, что меня стали дико раздражать поломки двенашки, вроде ничего серьезного не ломалось, но по мелочи, блин, столько всего, что реально начинало бесить. Тут и зародилась идея о том, что пора менять машину на иномарку. Выбор пал на таёту камри десятых годов.

    Да, морально то я созрел, а вот финансово никак не мог потянуть. Сразу скажу, что я против кредитов и брать машину, тем более не новую, в кредит это неразумно. Зарплата у меня 24к в месяц, так что насобирать 600-700 тысяч для меня практически нереально. Начал искать различные способы заработка в интернете. Вы не представляете сколько там развода, чего только не пробовал: и ставки на спорт, и сетевой маркетинг, и даже казино вулкан, в котором удачно проиграл около 10 тысяч(( Единственным направлением, в котором мне, казалось, можно заработать — это торговля валютой на бирже, это называют форексом. Но когда начал вникать, понял что это оочень сложно для меня. Продолжил копать дальше и наткнулся на бинарные опционы. Суть та же, что на форексе, но разобраться намного проще. Начал читать форумы, изучать трейдерские стратегии. Попробовал на демо счете, потом завел реальный счет. Если честно начать зарабатывать удалось не сразу, пока понял всю механику опционов, слил около 3000 рублей, но как оказалось это был драгоценный опыт. Сейчас зарабатываю 5-7 тыс. рублей в день. Машину удалось купить спустя пол года, но как по мне это неплохой результат, да и дело не в машине, у меня изменилась жизнь, с работы естественно уволился, появилось больше свободного времени на себя и семью. Будете смеяться, но работаю прямо на телефоне)) Если ты хочешь изменить свою жизнь как я, то вот что советую сделать прямо сейчас:
    1. Зарегистрируйтесь на сайте
    2. Потренируйтесь на Демо-счете (это бесплатно).
    3. Как только что-то будет получаться на Демо-счете, пополняйте РЕАЛЬНЫЙ СЧЕТ и вперед, к НАСТОЯЩИМ ДЕНЬГАМ!
    Также советую скачать приложение на телефон, с телефона работать намного удобнее. Скачать тут.

    Таблице примерного увеличения мощности двигателя при повышении степени сжатия:

    Увеличение степени сжатия Прибавка мощности ДВС
    с 8 до 9 2,0%
    с 9 до 10 1,7%
    с 10 до 11 1,5%
    с 11 до 12 1,3%
    с 12 до 13 1,2%
    с 13 до 14 1,1%
    с 14 до 15 1,0%
    с 15 до 16 0,9%
    с 16 до 17 0,8%

    Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7%.

    Таблица: степень сжатия и октановое число бензина. Примерная зависимость.

    Степень сжатия Бензин
    от 9 до 10.5 АИ 92
    от 10 до 12.5 АИ 95
    от 12 до 14.5 АИ 98

    Как повысить степень сжатия

    Самый простой способ поднять степень сжатия — это уменьшить объем камеры сжатия. Для этого следует прошлифовать нижнюю плоскость головки цилиндров (уменьшив ее высоту).

    Более эффективный способ — заменить поршни и расточить под них цилиндры. Этот метод повышает степень сжатия и увеличивает рабочий объем двигателя.

    Также на степень сжатия влияет установка тюнинг распредвала, который позволяет улучшить геометрические показатели степени сжатия за счет запаздывания закрытия впускных клапанов.

    Когда нужно увеличивать степень сжатия

    Эксперты журнала ЗаРулем решили проверить, как на двигатель повлияет повышение степени сжатия. В эксперименте принимал участие двигатель ВАЗ-2111, который имеет степень сжатия — 9,8. После чего прошлифовали нижнюю плоскость головки цилиндров сначала на 2 мм, а затем на 4 мм. Установили на стендовый мотор и сняли моментные характеристики. Результаты испытаний представлены в таблице:

    Проводимые доработки Степень сжатия Расход бензина
    В теории На практике
    Нижняя плоскость ГБЦ без изменений 9,8 (штатная)
    Нижняя плоскость ГБЦ — 2 мм 11 (+1,2) +4% 2,5%
    Нижняя плоскость ГБЦ — 4 мм 12,6 (+2,8) +9% 4,5%

    Прибавка мощности в обоих случаях составила всего 2–3%, причем, только в зоне малых и средних оборотов. А на высоких — никакого эффекта. Дело в том, что с увеличением степени сжатия резко растет давление в цилиндре. Этот рост провоцирует детонацию, ее ловит соответствующий датчик — и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается.

    Но стоит учитывать, что после поднятия степени сжатия следовало бы использовать бензин с более высоким октановым числом. Тогда результаты были бы немного лучше.

    Чтобы получить заметный прирост мощности рекомендуется подходить к вопросу тюнинга атмосферного двигателя комплексно. Кстати, если Вы решили установить турбину, тогда степень сжатия нужно, наоборот, уменьшить. А Вам приходилось менять степень сжатия? Какой эффект получили в итоге?

    Стоит ли менять степень сжатия для тюнинга двигателя?

    Как уменьшить степень сжатия двигателя?

    Степень сжатия. Теория и практика
    Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка.

    Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

    Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).

    Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.

    Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.

    Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя.

    Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объема плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объема цилиндра). Даже при 3.278 см3 во всем цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.

    Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смесив цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объем цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

    Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.

    Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные« форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

    Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с «нуля« и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете получить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех деталей двигателя, особенно конструкции распределительного вала и головки блока цилиндров плюс использование системы впрыска воды.

    Если вы выберете метод изготовления с «нуля«, одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части и уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка), то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 — 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших «куполов« у поршней или камер сгорания меньшего объема.

    Если проект вашего двигателя более «умеренный«, то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.