Изменяется ли степень сжатия при работе двигателя?

Системы изменения степени сжатия двигателя

Степень сжатия двигателя внутреннего сгорания тесно связана с к.п.д. В бензиновых двигателях степень сжатия ограничивается областью детонационного сгорания. Эти ограничения имеют особое значение для работы двигателя на полных нагрузках, в то время как на частичных нагрузках высокая степень сжатия не вызывает опасности детонации. Для увеличения мощности двигателя и повышения экономичности желательно снижать степень сжатия, однако если степень сжатия будет малой для всех диапазонов работы двигателя, это приведет к снижению мощности и увеличению расхода топлива на частичных нагрузках. При этом значения степени сжатия, как правило, выбираются намного ниже тех величин, при которых достигаются наиболее экономичные показатели работы двигателей. Заведомо ухудшая экономичность двигателей, это особенно сильно проявляется при работе на частичных нагрузках. Между тем, снижение наполнения цилиндров горючей смесью, увеличение относительного количества остаточных газов, уменьшение температуры деталей и т.п. создают возможности для повышения степени сжатия при частичных нагрузках с целью повышения экономичности двигателя и увеличения его мощности. Чтобы решить такую компромиссную задачу, разрабатываются варианты двигателей с изменяющейся степенью сжатия.

Повсеместное применение в конструкциях двигателей систем наддува сделало направление этой работы еще более актуальным. Дело в том, что при наддуве значительно увеличиваются механические и тепловые нагрузки на детали двигателя, в связи с чем их приходится усиливать, повышая массу всего двигателя в целом. При этом, как правило, срок службы деталей, работающих при более нагруженном режиме, сокращается, а надежность двигателя снижается. В случае перехода на переменную степень сжатия рабочий процесс в двигателе при наддуве можно организовать так, что за счет соответствующего снижения степени сжатия при любых давлениях наддува максимальные давления рабочего цикла (т.е. эффективность работы) будут оставаться неизменными или будут изменяться незначительно. При этом, несмотря на увеличение полезной работы за цикл, а, следовательно, и мощности двигателя, максимальные нагрузки на его детали могут не увеличиваться, что позволяет форсировать двигатели без внедрения изменений в их конструкцию.

Очень существенным для нормального протекания процесса сгорания в двигателе с изменяющейся степенью сжатия является правильный выбор формы камеры сгорания, обеспечивающей наиболее короткий путь распространения пламени. Изменение фронта распространения пламени должно быть очень оперативным, чтобы учитывать различные режимы работы двигателя при эксплуатации автомобиля. Учитывая применение дополнительных деталей в кривошипно-шатунном механизме, необходимо также разрабатывать системы с малым коэффициентом трения, чтобы не потерять преимуществ при применении изменяющейся степени сжатия.

Один из наиболее распространенных вариантов двигателя с изменяющейся степенью сжатия показан на рисунке.

Рис. Схема двигателя с изменяющейся степенью сжатия:
1 – шатун; 2 – поршень; 3 – эксцентриковый вал; 4 — дополнительный шатун; 5 – шатунная шейка коленчатого вала; 6 – коромысло

На частичных нагрузках дополнительный шатун 4 занимает крайнее нижнее положение и поднимает зону рабочего хода поршня. Степень сжатия при этом максимальна. При высоких нагрузках эксцентрик на валу 3 поднимает ось верхней головки дополнительного шатуна 4. При этом увеличивается надпоршневой зазор и уменьшается степень сжатия.

В 2000 году в Женеве был представлен экспериментальный бензиновый двигатель фирмы SAAB с изменяемой степенью сжатия. Его уникальные особенности позволяют достигать мощности в 225 л.с. при рабочем объеме в 1,6 л. и сохранять расход топлива сравнимого с вдвое меньшим двигателем. Возможность бесшагового изменения рабочего объема позволяет двигателю работать на бензине, дизельном топливе или на спирте.

Цилиндры двигателя и головка блока выполнены как моноблок, т. е. единым блоком, а не раздельно как у обычных двигателей. Отдельный блок представляет собой также блок-картер и шатунно-поршневая группа. Моноблок может перемещаться в блок-картере. Левая сторона моноблока при этом опирается на расположенную в блоке ось 1, служащую шарниром, правая сторона может приподниматься или опускаться при помощи шатуна 3 управляемого эксцентриковым валом 4. Для герметизации моноблока и блок-картера предусмотрен гофрированный резиновый чехол 2.

Рис. Двигатель с изменяющейся степенью сжатия SAAB:
1 – ось; 2 – резиновый чехол; 3 – шатун; 4 – эксцентриковый вал.

Степень сжатия изменяется при наклоне моноблока относительно блок-картера посредством гидропривода при неизменном ходе поршня. Отклонение моноблока от вертикали приводит к увеличению объема камеры сгорания, что вызывает снижение степени сжатия.

При уменьшении угла наклона степень сжатия повышается. Максимальная величина отклонения моноблока от вертикальной оси – 4%.

На минимальной частоте вращения коленчатого вал и сбросе подачи топлива, а также при малых нагрузках, моноблок занимает самое нижнее положение, в котором объем камеры сгорания минимален (степень сжатия – 14). Система наддува отключается, и воздух поступает в двигатель напрямую.

Под нагрузкой, за счет поворота эксцентрикового вала, шатун отклоняет моноблок в сторону, и объем камеры сгорания увеличивается (степень сжатия – 8). При этом сцепление подключает нагнетатель, и воздух начинает поступать в двигатель под избыточным давлением.

Рис. Изменение подачи воздуха в двигатель SAAB при различных режимах:
1 – дроссельная заслонка; 2 – перепускной клапан; 3 – сцепление; а – на малой частоте вращения коленчатого вала; б – на нагрузочных режимах

Оптимальная степень сжатия рассчитывается блоком управления электронной системы с учетом частоты вращения коленчатого вала, степени нагрузки, вида топлива и др. параметров.

В связи с необходимостью быстрого реагирования на изменение степени сжатия в данном двигателе пришлось отказаться от турбокомпрессора в пользу механического наддува с промежуточным охлаждением воздуха с максимальным давлением наддува 2,8 кгс/см2.

Расход топлива для разработанного двигателя на 30% меньше, чем у обычного двигателя такого же объема, а показатели по токсичности отработавших газов соответствуют действующим нормам.

Французская фирма МСЕ-5 Development, разработала для концерна «Пежо-Ситроен», двигатель с изменяемой степенью сжатия VCR (Variable Compression Ratio). В этом решении применена оригинальная кинематика кривошипно-шатунного механизма.

В данной конструкции передача движения от шатуна на поршни осуществляется через двойной зубчатый сектор 5. С правой стороны двигателя расположена опорная зубчатая рейка 7, на которую опирается сектор 5. Такое зацепление обеспечивает строго возвратно-поступательное движение поршня цилиндра, который соединен с зубчатой рейкой 4. Рейка 7 соединена с поршнем 6 управляющего гидроцилиндра.

В зависимости от режима работы двигателя по сигналу блока управления двигателем изменяется положение поршня 6 управляющего цилиндра, связанного с рейкой 7. Смещение рейки управления 7 вверх или вниз изменяет положение ВМТ и НМТ поршня двигателя, а вместе с ними и степени сжатия от 7:1 до 20:1 за 0,1 с. В случае необходимости имеется возможность изменения степени сжатия для каждого цилиндра в отдельности.

Рис. Двигатель с изменяемой степенью сжатия VCR:
1 – коленчатый вал; 2 – шатун; 3 – зубчатый опорный ролик; 4 – зубчатая рейка поршня; 5 – зубчатый сектор; 6 – поршень управляющего цилиндра; 7 – опорная зубчатая рейка управления.

Двигатель с переменной степенью сжатия: особенности конструкции

Как может показаться на первый взгляд, современный двигатель внутреннего сгорания достиг высшей ступени своей эволюции. На данный момент серийно выпускаются различные бензиновые и дизельные моторы, появились гибридные установки, дополнительно реализована возможность перевести двигатель на газ.

В списке наиболее значимых наработок за последние годы можно выделить: внедрение систем высокоточного впрыска под управлением сложной электроники, получение большой мощности без увеличения рабочего объема благодаря системам турбонаддува, увеличение количества клапанов на цилиндр, использование систем изменения фаз газораспределения и т.д.

Достаточно вспомнить попытки построить двигатель без коленвала и шатунов, избавиться от распредвала в устройстве ГРМ или динамично изменять степень сжатия двигателя. Сразу отметим, хотя одни проекты еще находятся в стадии разработки, другие уже стали реальностью. Например, двигатели с изменяемой степенью сжатия. Давайте рассмотрим особенности, преимущества и недостатки таких ДВС.

Изменение степени сжатия: зачем это нужно

Многие опытные водители знакомы с такими понятиями, как степень сжатия двигателя и октановое число для бензиновых моторов, а также цетановое число для дизельных. Для менее осведомленных читателей напомним, что степень сжатия представляет собой отношение объема над поршнем, который опущен в НМТ (нижняя мертвая точка) к тому объему, когда поршень поднялся в ВМТ (верхняя мертвая точка).

Бензиновые агрегаты имеют, в среднем, показатель 8-14, дизели 18 -23. Степень сжатия является фиксированной величиной и конструктивно закладывается во время разработки того или иного двигателя. Также от степени сжатия будут зависеть и требования к использованию октанового числа бензина в том или ином моторе. Параллельно учитывается и то, атмосферный двигатель или с наддувом.

Если говорить о самой степени сжатия, фактически это показатель, который определяет, насколько сильно будет сжиматься топливно-воздушная смесь в цилиндрах двигателя. Если просто, хорошо сжатая смесь лучше воспламеняется и полноценнее сгорает. Получается, увеличение степени сжатия позволяет добиться роста КПД двигателя, получить улучшенную отдачу от мотора, снизить расход топлива и т.д.

При этом топливо имеет так называемую «детонационную стойкость», то есть способность противостоять детонации. Если же сильно увеличить степень сжатия, тогда горючее может начать детонировать в двигателе при определенных режимах работы ДВС.

Результат — неконтролируемый взрывной процесс сгорания в цилиндрах, быстрое разрушение деталей мотора ударной волной, значительный рост температуры в камере сгорания и т.д. Как видно, сделать постоянной высокую степень сжатия нельзя именно по этим причинам. При этом единственным выходом в данной ситуации является возможность гибко изменять данный показатель применительно к разным режимам работы двигателя.

Такой «рабочий» мотор недавно предложили инженеры премиального бренда Infiniti (элитное подразделение Nissan). Также в аналогичные разработки были и остаются вовлечены другие автопроизводители (SAAB, Peugeot ,Volkswagen и т.д). Итак, давайте рассмотрим двигатель с изменяемой степенью сжатия.

Переменная степень сжатия двигателя: как это работает

Прежде всего, доступная возможность изменять степень сжатия позволяет в значительной мере увеличить производительность турбомоторов с одновременным уменьшением расхода топлива. В двух словах, в зависимости от режима работы и нагрузок на ДВС топливный заряд сжимается и сгорает в самых оптимальных условиях.

Когда нагрузки на силовой агрегат минимальны, в цилиндры подается экономичная «бедная» смесь (много воздуха и мало топлива). Для такой смеси хорошо подходит высокая степень сжатия. Если же нагрузки на мотор растут (подается «богатая» смесь, в которой больше бензина), тогда закономерно возрастает риск возникновения детонации. Соответственно, чтобы этого не произошло, степень сжатия динамично уменьшается.

Что касается самой реализации схемы, фактически задача сводится к тому, что происходит физическое уменьшение рабочего объема двигателя, однако сохраняются все характеристики (мощность, момент и т.д.)

Сразу отметим, над таким решением трудились разные компании. В результате появились разные способы управления степенью сжатия, например, изменяемый объем камеры сгорания, шатуны с возможностью подъема поршней и т.д.

  • Одной из самых ранних разработок стало внедрение дополнительного поршня в камеру сгорания. Указанный поршень имел возможность перемещаться, одновременно изменяя объем. Минусом всей конструкции стала необходимость устанавливать дополнительные детали в БЦ. Также сразу проявились изменения формы камеры сгорания, горючее сгорало неравномерно и неполноценно.
Читайте также  Как слить все масло с двигателя?

По указанным причинам данный проект так и не был завершен. Такая же участь постигла и разработку, которая имела поршни с возможностью изменения их высоты. Указанные поршни разрезного типа оказались тяжелыми, еще добавились трудности касательно реализации управления высотой подъема крышки поршня и т.д.

  • Дальнейшие разработки уже не затрагивали поршни и камеру сгорания, максимум внимания был уделен вопросу подъема коленчатого вала. Другими словами, стояла задача реализовать управление высотой подъема коленвала.

Схема устройства такова, что опорные шейки вала расположены в специальных муфтах эксцентрикового типа. Указанные муфты приводятся в движение посредством шестерен, которые связаны с электрическим двигателем.

Отметим, что было построено несколько прототипов на базе 1.8-литрового турбированного агрегата от Volkswagen, степень сжатия менялась от 8 до 16. Двигатель долго испытывали, но серийным агрегат так и не стал.

  • Еще одной попыткой найти решение стал двигатель, в котором степень сжатия менялась посредством подъема всего блока цилиндров. Разработка принадлежит бренду Saab, а сам агрегат чуть даже не попал в серию. Двигатель известен как SVC, объем 1.6 литра, агрегат с 5 цилиндрами, оснащен турбонаддувом.

Мощность составила около 220 л. с., крутящий момент чуть более 300 Нм. Примечательно то, что расход горючего в режиме средних нагрузок снизился почти на треть. Что касается самого топлива, появилась возможность заливать как АИ-76, так и 98-й.

Инженеры Saab разделили блок цилиндров, выделив две условные части. В верхней находились головки и гильзы цилиндров, тогда как в нижней части коленчатый вал. Своеобразным соединением этих частей блока с одной стороны был подвижный шарнир, а с другой особый механизм, оснащенный электроприводом.

На практике сами детали для подъема верхней части блока, а также и сам защитный кожух оказались весьма слабыми элементами. Возможно, именно это помешало мотору попасть в серию и проект дальше закрыли.

  • Очередную разработку далее предложили инженеры из Франции. Турбомотор с рабочим объемом 1.5 литра получил возможность менять степень сжатия от 7 до 18 и выдавал мощность около 225 л.с. Моментная характеристика зафиксирована на отметке 420 Нм.

Конструктивно агрегат сложный, с разделенным шатуном. В той области, где шатун крепится к коленвалу, деталь оснастили особым зубчатым коромыслом. В месте соединения шатуна с поршнем также была внедрена планка-рейка зубчатого типа.

С другой стороной к коромыслу была прикреплена рейка поршня, который реализовывал управление. Система приводилась от системы смазки, рабочая жидкость проходила через сложную систему каналов, клапанов, а также имелся дополнительный электропривод.

В двух словах, перемещение управляющего поршня оказывало воздействие на коромысло. В результате менялась и высота подъема основного поршня в цилиндре. Отметим, что двигатель также не стал серийным, а проект был заморожен.

  • Следующей попыткой создать двигатель с изменяемой степенью сжатия стало решение инженеров Infiniti, а именно двигатель VCT (от англ. Variable Compression Turbocharged). В этом моторе стало возможным менять степень сжатия от 8 до 14. Особенностью конструкции является уникальный траверсный механизм.

Управляет процессом контроллер, посылая сигналы на электродвигатель. Электромотор после получения команды от блока управления смещает тягу, а система рычагов реализует смену положения, что и позволяет менять высоту подъема поршня.

В результате агрегат Infiniti VCT с рабочим объемом 2.0 литра с мощностью около 265 л.с. позволил экономить почти 30% горючего сравнительно с аналогичными ДВС, которые при этом имеют постоянную степень сжатия.

Если производителю удастся эффективно решить имеющиеся на данный момент проблемы (сложность конструкции, повышенные вибрации, надежность, высокая конечная стоимость производства агрегата и т.д.), тогда оптимистичные заявления представителей компании вполне могут воплотиться в реальность, а сам двигатель имеет все шансы стать серийным уже в 2018-2019 году.

Подведем итоги

С учетом приведенной выше информации становится понятно, что двигатели с переменной степенью сжатия способны обеспечить значительное снижение расхода топлива на бензиновых моторах с турбонаддувом.

Другими словами, подобный ДВС вполне способен предложить все преимущества мощного бензинового высокооборотистого турбодвигателя. При этом по расходу топлива подобный агрегат может вплотную приблизиться к турбодизельным аналогам, которые сегодня популярны, в первую очередь, благодаря своей экономичности.

Форсирование двигателя. Плюсы и минусы доработки мотора без турбины. Главные способы форсирования: тюнинг ГБЦ, коленвал, степень сжатия, впуск и выпуск.

Особенности установки ГБО на мотор с турбонаддувом. Какое газобалонное оборудование лучше ставить на двигатели с турбиной. Советы и рекомендации.

Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.

Влияние степени сжатия на мощность и другие характеристики мотора. Тюнинг и увеличение степени сжатия, а также понижение параметра в отдельных случаях.

Возможность установки турбокомпрессора на двигатель с карбюратором. Основные преимущества и недостатки турбонаддува на карбюраторном авто.

Увеличение мощности атмосферного и турбированного двигателя. Глубокий или поверхностный тюнинг ДВС. Модификация впускной и выпускной системы. Прошивка ЭБУ.

Степень сжатия двигателя

Работа двигателей внутреннего сгорания характеризуется рядом величин. Одна из них – степень сжатия двигателя. Важно не путать ее с компрессией – значением максимального давления в цилиндре мотора.

Что такое степень сжатия

Данная степень – это соотношение объема цилиндра двигателя к объему камеры сгорания. Иначе можно сказать, что значение компрессии – отношение объема свободного места над поршнем, когда тот находится в нижней мертвой точке, к аналогичному объему при нахождении поршня в верхней точке.

Выше упоминалось, что компрессия и степень сжатия – не синонимы. Различие касается и обозначений, если компрессию измеряют в атмосферах, степень сжатия записывается как некоторое отношение, например, 11:1, 10:1, и так далее. Поэтому нельзя точно сказать, в чем измеряют степень сжатия в двигателе – это «безразмерный» параметр, зависящий от других характеристик ДВС.

Условно степень сжатия можно описать также как разницу между давлением в камере при подаче смеси (или дизтоплива в случае с дизельными двигателями) и при воспламенении порции горючего. Данный показатель зависит от модели и типа двигателя и обусловлен его конструкцией. Степень сжатия может быть:

  • высокой;
  • низкой.

Расчет сжатия

Рассмотрим, как узнать степень сжатия двигателя.

Она вычисляется по формуле:

Здесь Vр означает рабочий объем отдельного цилиндра, а Vс – значение объема камеры сгорания. Формула показывает важность значения объема камеры: если его, например, снизить, то параметр сжатия станет больше. То же произойдет и в случае увеличения объема цилиндра.

Чтобы узнать рабочий объем, нужно знать диаметр цилиндра и ход поршня. Вычисляется показатель по формуле:

Здесь D – диаметр, а S – ход поршня.

Поскольку камера сгорания имеет сложную форму, ее объем обычно измеряется методом заливания в нее жидкости. Узнав, сколько воды поместилось в камеру, можно определить и ее объем. Для определения удобно использовать именно воду из-за удельного веса в 1 грамм на куб. см – сколько залилось грамм, столько и «кубиков» в цилиндре.

Альтернативный способ, как определить степень сжатия двигателя – обратиться к документации на него.

На что влияет степень сжатия

Важно понимать, на что влияет степень сжатия двигателя: от нее прямо зависит компрессия и мощность. Если сделать сжатие больше, силовой агрегат получит больший КПД, поскольку уменьшится удельный расход горючего.

Степень сжатия бензинового двигателя определяет, горючее с каким октановым числом он будет потреблять. Если топливо низкооктановое, это приведет к неприятному явлению детонации, а слишком высокое октановое число вызовет нехватку мощности – двигатель с малой компрессией просто не сможет обеспечивать нужное сжатие.

Таблица основных соотношений степеней сжатия и рекомендуемых топлив для бензиновых ДВС:

Сжатие Бензин
До 10 92
10.5-12 95
От 12 98

Интересно: бензиновые турбированные двигатели функционируют на горючем с большим октановым числом, чем аналогичные ДВС без наддува, поэтому их степень сжатия выше.

Еще больше она у дизелей. Поскольку в дизельных ДВС развиваются высокие давления, данный параметр у них также будет выше. Оптимальная степень сжатия дизельного двигателя находится в пределах от 18:1 до 22:1, в зависимости от агрегата.

Изменение коэффициента сжатия

Зачем менять степень?

На практике такая необходимость возникает нечасто. Менять сжатие может понадобиться:

  • при желании форсировать двигатель;
  • если нужно приспособить силовой агрегат под работу на нестандартном для него бензине, с отличающимся от рекомендованного октановым числом. Так поступали, например, советские автовладельцы, поскольку комплектов для переоборудования машины на газ в продаже не встречалось, но желание сэкономить на бензине имелось;
  • после неудачного ремонта, чтобы устранить последствия некорректного вмешательства. Это может быть тепловая деформация ГБЦ, после которой нужна фрезеровка. После того, как повысили степень сжатия двигателя снятием слоя металла, работа на изначально предназначенном для него бензине становится невозможной.

Иногда меняют степень сжатия при конвертации автомобилей для езды на метановом топливе. У метана октановое число – 120, что требует повышать сжатие для ряда бензиновых автомобилей, и понижать – для дизелей (СЖ находится в пределах 12-14).

Перевод дизеля на метан влияет на мощность и ведет к некоторой потере таковой, что можно компенсировать турбонаддувом. Турбированный двигатель требует дополнительного снижения степени сжатия. Может потребоваться доработка электрики и датчиков, замена форсунок дизельного мотора на свечи зажигания, новый комплект цилиндро-поршневой группы.

Форсирование двигателя

Чтобы снимать больше мощности или получить возможность ездить на более дешевых сортах топлива, ДВС можно форсировать путем изменения объема камеры сгорания.

Для получения дополнительной мощности двигатель следует форсировать, увеличивая степень сжатия.

Важно: заметный прирост по мощности будет лишь на том двигателе, который штатно работает с более низкой степенью сжатия. Так, например, если ДВС с показателем 9:1 тюнингован до 10:1, он выдаст больше дополнительных «лошадей», чем двигатель со стоковым параметром 12:1, форсированный до 13:1.

Возможные следующие методы, как увеличить степень сжатия двигателя:

  • установка тонкой прокладки ГБЦ и доработка головки блока;
  • расточка цилиндров.

Под доработкой ГБЦ подразумевают фрезеровку ее нижней части, соприкасающейся с самим блоком. ГБЦ становится короче, благодаря чему уменьшается объем камеры сгорания и растет степень сжатия. То же происходит и при монтаже более тонкой прокладки.

Важно: эти манипуляции могут также потребовать установки новых поршней с увеличенными клапанными выемками, поскольку в ряде случаев возникает риск встречи поршня и клапанов. В обязательном порядке настраиваются заново фазы газораспределения.

Расточка БЦ также ведет к установке новых поршней под соответствующий диаметр. В результате растет рабочий объем и становится больше степень сжатия.

Читайте также  Нужно ли менять масло после раскоксовки двигателя?

Дефорсирование под низкооктановое топливо

Такая операция проводится, когда вопрос мощности вторичен, а основная задача – приспособить двигатель под другое горючее. Это делается путем снижения степени сжимания, что позволяет двигателю работать на малооктановом бензине без детонации. Кроме того, налицо и определенная финансовая экономия на стоимости горючего.

Интересно: подобное решение нередко используется для карбюраторных двигателей старых машин. Для современных инжекторных ДВС с электронным управлением дефорсирование крайне не рекомендуется.

Основной способ, как уменьшить степень сжатия двигателя — сделать прокладку ГБЦ более толстой. Для этого берут две стандартные прокладки, между которыми делают алюминиевую прокладку-вставку. В результате растет объем камеры сгорания и высота ГБЦ.

Некоторые интересные факты

Метанольные двигатели гоночных машин имеют сжатие более 15:1. Для сравнения, стандартных карбюраторный двигатель, потребляющий неэтилированный бензин, имеет сжатие максимум 1.1:1.

Из серийных образцов моторов на бензине со сжатием 14:1 на рынке присутствуют образцы от Mazda (серия Skyactiv-G), ставящиеся, например, на CX-5. Но их фактическая СЖ находится в пределах 12, поскольку в данных моторах задействован так называемый «цикл Аткинсона», когда смесь сжимается в 12 раз после позднего закрытия клапанов. Эффективность таких двигателей измеряется не по сжатию, а по степени расширения.

В середине XX века в мировом двигателестроении, особенно в США, наблюдалась тенденция к увеличению степени сжатия. Так, к 70-м основная масса образцов американского автопрома имела СЖ от 11 до 13:1. Но штатная работа таких ДВС требовала использования высокооктанового бензина, который в то время умели получать только процессом этилирования – добавлением тетраэтилсвинца, высокотоксичного компонента. Когда в 1970-х годах появились новые экологические стандарты, этилирование стали запрещать, и это привело к обратной тенденции – снижению СЖ в серийных образцах двигателей.

Современные двигатели имеют систему автоматической регуляции угла зажигания, которая позволяет ДВС работать на «неродном» топливе – например, 92 вместо 95, и наоборот. Система управления УОЗ помогает избежать детонации и других неприятных явлений. Если же ее нет, то, например, залив высокооктановый бензин двигатель, не рассчитанный на такое горючее, можно потерять в мощности и даже залить свечи, поскольку зажигание будет поздним. Ситуацию можно поправить ручным выставлением УОЗ по инструкции к конкретной модели автомобиля.

Что такое компрессия и степень сжатия и чем они отличаются

При диагностике автомобиля перед покупкой опытные автовладельцы практически всегда советуют новичкам проверить компрессию. А еще существует степень сжатия – казалось бы, схожий термин, ведь компрессия – это и есть сжатие. На самом деле это совершенно разные вещи. Давайте разберемся, что есть что, а заодно поймем, что и как нужно проверять при покупке машины.

Начнем со степени сжатия. Как мы помним, поршень в цилиндре при работе двигателя движется вверх-вниз, имея две так называемых мертвых точки, верхнюю и нижнюю. Так вот, степень сжатия – это отношение между двумя объемами: полным объемом цилиндра, когда поршень находится в нижней мертвой точке, и объемом камеры сжатия, когда поршень находится в верхней мертвой точке. То есть степень сжатия – это математическое отношение, которое показывает, во сколько раз топливовоздушная смесь (или воздух, если речь о дизеле) сжимается в цилиндре при работе мотора.

Степень сжатия – одна из базовых характеристик любого двигателя, и закладывается она на стадии проектирования. У бензиновых моторов она ниже, чем у дизельных: в среднем от 8:1 до 12:1 у первых и от 14:1 до 23:1 у вторых. Дело в том, что работа дизельного мотора предполагает самостоятельное воспламенение топливовоздушной смеси от сжатия, а в бензиновом моторе смесь в каждом такте поджигается свечой зажигания. Однако в целом по мере развития технологий двигателестроения степень сжатия в моторах росла. Причина проста: повышение степени сжатия позволяет увеличить КПД мотора, получая больше мощности при том же рабочем объеме и расходе топлива. Собственно, с ростом степени сжатия связано и применение более высокооктановых бензинов.

Таким образом, степень сжатия – это конструктивная характеристика двигателя, и она не меняется по мере его износа и старения. Степень сжатия не нужно «проверять» при покупке, а знать ее нужно в основном для того, чтобы знать, какой бензин лучше заливать в бак купленной машины.

Если степень сжатия – параметр математический и неизменный, то компрессия – характеристика изменяемая. Компрессия – это давление, создаваемое в цилиндре в конце такта сжатия, когда поршень идет от нижней мертвой точки к верхней, сжимая воздух или топливовоздушную смесь. Давление в цилиндре в момент, когда поршень достиг верхней мертвой точки – это и есть компрессия. Можно подумать, что компрессия фактически должна быть равна степени сжатия – ведь она тоже показывает разницу давления в цилиндре при двух положениях поршня – верхнем и нижнем. Однако на самом деле компрессия оказывается значительно выше. Ведь воздух при резком сжатии нагревается, что означает увеличение давления. А еще он нагревается от горячих стенок цилиндра, ведь рабочая температура двигателя гораздо выше температуры окружающей среды. Таким образом, компрессия, конечно, зависит от степени сжатия, но не равна ей. И именно компрессию замеряют при диагностике двигателя, чтобы оценить его техническое состояние.

Замер компрессии проводится с учетом перечисленных выше условий: на полностью прогретом двигателе и при полностью открытой дроссельной заслонке, отвечающей за подачу воздуха в цилиндр. Разумеется, горение топлива для замера компрессии не нужно, в цилиндре сжимается только воздух. Так что подачу топлива отключают, а свечу зажигания (или накаливания, если речь идет о дизеле) выкручивают, а на ее место вкручивают шлаг компрессометра. Компрессометр – это прибор для измерения компрессии. Он фактически представляет собой манометр, подключаемый трубкой к цилиндру и оснащенный обратным клапаном, чтобы не сбрасывать измеренное давление.

Замер компрессии позволяет оценить исправность и техническое состояние двигателя. Во-первых, после замера можно сравнить соответствие полученного результата заводским параметрам – то есть оценить компрессию в имеющемся двигателе по сравнению с новым. Во-вторых, низкий показатель компрессии означает наличие проблем с мотором, ведь он сигнализирует о том, что воздух «утекает» из камеры сгорания, а при работе мотора из нее будут прорываться раскаленные газы. Причин может быть довольно много: поршневые кольца, повреждения седел клапанов и самих клапанов, негерметичность прокладки ГБЦ и даже трещина в самом поршне. Ну а в-третьих, важна не только сама величина компрессии, но и ее равномерность во всех цилиндрах двигателя. Если компрессия в одном или нескольких цилиндрах ниже, чем в других, это говорит о неравномерном износе и наличии проблем.

Таким образом, замер компрессии – одна из простых, но эффективных методик оценки исправности и общего технического состояния двигателя. Он позволяет быстро отсеять заведомо «мертвые» моторы, имеющие проблемы с цилиндропоршевой группой, клапанами и так далее. Поэтому замер компрессии можно и нужно проводить при диагностике практически любого автомобиля перед покупкой.

Что такое степень сжатия двигателя

Силовые агрегаты современных легковых автомобилей представляют собой сложные технические конструкции, и их работа определяется множеством различных параметров. Начинающим автолюбителям бывает очень непросто разобраться с тем, что же именно под каждым из них подразумевается. К примеру, о том, что такое степень сжатия двигателя в действительности не знают даже опытные автолюбители. Вернее, они считают, что им эти известно, но на самом деле очень часто путают этот параметр с компрессией.

Что такое степень сжатия и чем она отличается от компрессии

Иллюстрация степени сжатия 10:1

Каждый двигатель внутреннего сгорания функционирует за счет того, что в его цилиндрах при сжигании топливной смеси образуются газы, которые приводят в движение поршни, а они, в свою очередь — коленчатый вал. Таким образом, происходит преобразование энергии горения в энергию механическую, возникает крутящий момент, благодаря чему автомобиль движется.

Сгорание топливной смеси происходит в цилиндрах, причем перед воспламенением поршни сжимают ее до определенного объема. Именно отношение полного объема цилиндра к объему камеры сгорания и называется степенью сжатия ДВС. Эта величина не имеет размерности и выражается простым соотношением. Для большинства современных бензиновых двигателей внутреннего сгорания она составляет от 8:1 до 12:1, а для дизельных моторов — от 11:1 до 14:1.

Под компрессией понимается максимальное значение давления, которое возникает в камере сгорания в самом конце такта сжатия топливной смеси. Таким образом, эта величина является не относительной, а абсолютной величиной. Для ее измерения используются такие единицы, как атмосферы, кг/см 2 , а также килопаскали или бары. Компрессия тесно связана со степенью сжатия, однако совсем не идентична ей. На ее значение оказывает влияние не только объем, до которого сжимается топливная смесь перед воспламенением, но и такие факторы, как ее состав, текущая температура двигателя, наличие зазоров в приводах клапанов и некоторые другие.

На что влияет степень сжатия двигателя

Нормальное сгорание смеси (вверху) и детонация (внизу)

Степень сжатия двигателя напрямую влияет на то количество работы, которое производит силовой агрегат. Чем она выше, тем больше энергии выделяется при сжигании топливной смеси, и, соответственно, тем большую мощность демонстрирует силовой агрегат. Именно по этой причине в конце прошлого века производители двигателей внутреннего сгорания старались делать свою продукцию мощнее именно за счет увеличения степени сжатия, а не за счет увеличения объемов цилиндров и камер сгорания. Следует заметить, что при форсировании моторов таким способом достигается существенный прирост мощности без дополнительного потребления топлива. Таким образом, моторы в итоге получаются не только мощными, но еще и экономичными.

У такого метода есть, однако, и свои ограничения, причем довольно существенные. Дело в том, что при сжатии до определенной величины топливная смесь детонирует, то есть происходит ее самопроизвольный взрыв. Это, правда, касается только бензиновых двигателей: в дизельных моторах детонации не происходит, и во многом именно поэтому они в среднем имеют более высокую степень сжатия.

Для того чтобы серьезно увеличить значение давления детонации, повышают октановое число бензина, что существенно удорожает топливо. Кроме того, многие химические добавки, которые для этой цели используются, ухудшают экологические параметры двигателей внутреннего сгорания. Некоторые не очень опытные автомобилисты считают, что чем выше октановое число бензина, тем больше энергии он выделяет при сгорании, однако на самом деле это совсем не так: эта характеристика не оказывает никакого влияния на теплотворную способность топлива.

Читайте также: Какая компрессия должна быть в двигателе.

Как рассчитывают степень сжатия двигателя

Поскольку очень желательно, чтобы двигатель внутреннего сгорания, установленный на автомобиле, имел максимально возможную степень сжатия, то необходимо уметь ее определять. Важно это еще и для того, чтобы при регулировке силового агрегата, направленной на его форсирование, избежать опасности детонации, которая может просто разрушить мотор.

Читайте также  Как поднять компрессию в одном цилиндре двигателя?

Стандартная формула, по которой рассчитывается степень сжатия двигателя внутреннего сгорания, имеет следующий вид:

  • CR=(V+C)/C,
  • где CR — степень сжатия двигателя, V — рабочий объем цилиндра, C — объем камеры сгорания.

Для того чтобы определить значение этой величины для одного цилиндра, нужно сначала разделить общий рабочий объем силового агрегата на их количество. Таким образом определяется значение параметра V из приведенной выше формулы. Определить объем камеры сгорания (то есть значение величины С) несколько сложнее, но вполне возможно. Для этого опытные автомобилисты и механики, специализирующиеся на ремонте и наладке двигателей внутреннего сгорания, используют бюретку, которая проградуирована в кубических сантиметрах. Наиболее простой способ заключается в том, чтобы залить в камеру сгорания жидкость (например, бензин), а после этого измерить с помощью бюретки ее объем. Полученные данные нужно подставить в формулу расчета.

На практике значение степени сжатия двигателя обычно определяется в следующих случаях:

  • При форсировании силового агрегата;
  • При его приспособлении для функционирования с топливом другого октанового числа;
  • После проведения такого ремонта ДВС, когда требуется корректировка степени сжатия.

Как изменить степень сжатия двигателя

У современных двигателей внутреннего сгорания меняют степень сжатия как в сторону увеличения, так и в строну уменьшения. Если ее необходимо увеличить, то растачивают цилиндры и устанавливают поршни большего диаметра. Еще один достаточно распространенный способ — это уменьшение объема камер сгорания. Для этого там, где головка цилиндров сопрягается с блоком, удаляется слой металла. Эту операцию производят на строгальном или фрезерном станке.

Если по тем или иным причинам нужно снизить степень сжатия двигателя внутреннего сгорания, то проще всего для этого между блоком цилиндров и головкой установить дополнительную прокладку из дюралюминия. Еще один, более сложный способ состоит в том, что на токарном станке с днища поршня удаляется слой металла.

Что такое такое степень сжатия двигателя и на что она влияет

От величины сжатия зависит термический КПД двигателя. Но с ростом степени повышается и риск детонации, поэтому при форсировке и капитальном ремонте следует уделить время расчетам. Давайте рассмотрим, как увеличить степень сжатия двигателя, взаимосвязь компрессии и степени, и чем примечателен двигатель цикла Миллера-Аткинсона.

Как связаны степень сжатия и компрессия двигателя?

Степень сжатия в цилиндрах мотора – величина абсолютная и рассчитывается математически. На практике это соотношение отображает коэффициент сжатия поступившей в цилиндр топливной смеси на такте впуска. Понятие компрессии означает пиковое давление в камере сгорания в конце такта сжатия и может быть измерено практически. Компрессия хоть и является производной от степени сжатия, но зависит от многих факторов:

  • герметичность цилиндро-поршневой группы (ЦПГ) и клапанного механизма;
  • мощность стартера, состояние АКБ и качество контактов, влияющее на количество оборотов стартера.

Форсирование двигателя путем увеличения степени сжатия

Чем выше степень, тем горячее воздух в конце такта сжатия и тем выше КПД двигателя. Но повышение одного параметра не гарантирует линейное возрастание второго. Наибольший прирост мощности ощущается при повышении степени до 10-11 единиц.

К примеру, увеличив степень сжатия стандартного ВАЗовского мотора с 9.8 до 11, мы в теории получаем прирост термического КПД на 4%. Тест на стенде при этом покажет куда более скромное значение – 2,5%. Повысив степень сжатия того же мотора еще на единицу, мы получим фактическую прибавку в 4.5%. Моментная характеристика возрастет главным образом на низких и средних оборотах. Дальнейшее увеличение степени сжатия без перехода на высокооктановое спортивное топливо и вовсе не даст результат.

Причина такого явления — в детонации, которая возникает в случае слишком высокого пикового давления в камере сгорания. При контакте с разогретым воздухом в таком случае смесь самовоспламеняется еще до момента подачи искры. При этом фронт пламени распространяется со скоростью более 2000 м/с, тогда как значение при нормальном сгорании не превышает 250-300 м/с.

Ударная волна такой силы оказывает разрушительное давление на цилиндры, стенки камеры сгорания, поршни. Также значительно повышается температура выхлопных газов, что приводит к прогоранию днища поршня, клапанов.

Поэтому тюнинг со сжатием следует проводить после точного математического расчета и с прицелом на октановое число бензина.

Основные методы увеличения

  1. Уменьшение толщины ГБЦ, БЦ. С привалочной плоскости головки и блока методом фрезеровки либо шлифовки снимается слой металла и уменьшается объем камеры сгорания.
  2. Установка поршней с выпуклостями. Цель, как и в предыдущем методе – уменьшение объема камеры сгорания.
  3. Увеличение хода поршня за счет установки другого коленчатого вала, шатунов.

Как работает двигатель с изменяемой степенью сжатия?

До недавнего времени показатель степени закладывался инженерами на этапе разработки и был фиксированным вне зависимости от режима работы двигателя. Нормальное значение для современных бензиновых моторов варьируется от 8 до 14 единиц, традиционно высокая степень сжатия у дизельных моторов – 18-23.

Ужесточение экологических норм заставляет гениев инженерной мысли искать новые пути увеличения термического КПД. Одно из таких решений – двигатель с изменяемой степенью сжатия. Было разработано несколько вариантов динамического изменения степени:

  • дополнительная секция в полости ГБЦ. Открытие секции позволяет увеличить объем камеры сгорания, уменьшая тем самым степень. Система не получила распространения из-за избыточного усложнения конструкции ГБЦ;
  • поршни с изменяемой высотой. Конструкция получилась слишком громоздкой, появились проблемы с перекосом поршней и уплотнением ЦПГ;
  • регулировка высоты подъема коленчатого вала. Изменение степени сжатия осуществляется за счет специальных эксцентриковых муфт, которые регулируют высоту опорных подшипников коленвала. Технология долгое время тестировалась концерном VAG, но так и не вошла в серию;
  • регулировка высоты поднятия ГБЦ. Специальный механизм с электроприводом и шарнирное соединение частей блока двигателя позволяли регулировать степень от 8 до 14 единиц. Разрабатывалась технология инженерами SAAB, но из-за ненадежности резинового кожуха, герметизирующего подвижные части блока, и излишней сложности конструкции также не пошла в серию;

  • шатун с изменяемой длиной. Высота шатуна регулировалась специальным реечным механизмом с помощью давления масла. Как и в предыдущих случаях, разработка французских инженерах не была внедрена в массовое производство;

  • траверсный механизм сочленения шатуна с коленчатым валом. За счет изменения угла поворота траверсы уменьшается либо увеличивается ход поршня. Разработка инженеров Infiniti используется на двухлитровом моторе VC-T, который сейчас устанавливается на кроссовер QX50. Двигатель развивает максимальную мощность в 268 л.с. и пиковый крутящий момент 380 Нм.

Цикл Миллера-Аткинсона

Большую известность цикл Миллера-Аткинсона получил благодаря рекламным брошюрам компании Mazda. Маркетологи гордо заявляют, что инженерам удалось поднять степень сжатия двигателей модели Skyactive до 14 единиц. На самом деле речь идет о геометрической степени сжатия, а не о фактической.

Трюк заключается в том, что во время поднятия поршня на такте сжатия выпускные клапаны еще долгое время открытые, из-за чего часть свежего воздушного заряда выталкивается в выхлопной тракт. Поэтому фактическая степень близка к стандартным для бензиновых моторов 12 единицам. Увеличение термического КПД при этом достигается за счет более эффективного использования энергии расширяющихся газов на такте рабочего хода. За счет большего хода (увеличен диаметр кривошипа) газы дольше давят на поршень. Поэтому при сгорании одной и той же доли топлива, в сравнении с обычным циклом Отто, на коленчатый вал передается больший крутящий момент. Технология позволяет в режимах малых и средних нагрузок значительно уменьшить расход топлива и количество вредных выбросов.

Математический расчет

Степень сжатия двигателя внутреннего сгорания равняется объему камеры сгорания к рабочему объему цилиндра и рассчитывается по формуле (V + C)/C = CR, где

  • V — объем цилиндра, когда поршень находится в нижней мертвой точке (НМТ). Для расчета необходимо сумму объемов всех цилиндров (указывается в технической характеристике ДВС) разделить на количество котлов;
  • С — объем камеры сгорания, когда поршень в верхней мертвой точке (ВМТ). Включает в себя объем полости ГБЦ, прокладки ГБЦ и выемок в цилиндре. Если поршень имеет выпуклость, ее объем отнимается от общего объема камеры сгорания.

Вычислить степень сжатия математически довольно непросто из-за сложной геометрической формы камеры сгорания. Поэтому на практике применяются 2 основные методы вычисления.

Видео:Как измерить степень сжатия правильно.

Практический расчет методом проливки

Суть измерения заключается в поочередном заполнении жидкостью площади над поршнем, когда тот находится в верхней мертвой точке, и стенок камеры сгорания ГБЦ. Для измерения нам необходим кусок оргстекла, в котором будут пропилены отверстия для вкручивания болтов ГБЦ и отверстие для заливки жидкости. Между оргстеклом и блоком необходимо установить уже использованную (обжатую) прокладку. Стенки цилиндров для увеличения гидроплотности необходимо смазать густой консистентной смазкой (литиевой либо обычным солидолом).

Притянув оргстекло болтами, заполните образовавшейся объем жидкостью. Объем поместившейся воды будет соответствовать объему надпоршневого пространства. Аналогичный тест проводится и с головкой блока. При этом клапана должны быть притерты, между седлами и тарелками нанесена консистентная смазка. Сумма объема залитых жидкостей и будет объемом камеры сгорания.

Чтобы рассчитать степень сжатия на онлайн-калькуляторе , также будет необходимо измерить величину хода поршня и диаметр цилиндра. Все эти значения помогут вычислить объем двигателя, который изменяется при каждой фрезеровке плоскостей БЦ, ГБЦ, установке поршней иной геометрической формы, расточки цилиндров либо установке других шатунов, коленчатого вала.

Можно ли рассчитать степень, измерив компрессию?


Компрессия напрямую зависит не только от понятия степени сжатия двигателя, но и от природы сжимаемого газа и условий в камере сгорания. На практике зависимость этих параметров выливается в формулу Р = Ро*Ɛƴ, где

  • Ро – начальное давление в цилиндре, принимаемое за 1;
  • Ƴ – адиабатический показатель для воздуха. В двигателе внутреннего сгорания при сжатии часть тепла отдается стенкам цилиндра, камеры сгорания; происходит утечка части газа через неплотности, а воздух перемешан с частичками топлива, поэтому процесс считается недиабетическим. Показатель политропы при этом равняется не эталонным 1.4, а приближенным к фактическим 1.2.

Все это значит, что, измерив компрессию, мы можем вычислить показатель степени сжатия двигателя. К примеру, при компрессии 15,8 степень сжатия будет близка к 10 единицам. Чтобы уменьшить погрешность, нужно соблюсти все правила измерения компрессии:

  1. Свечи должны быть выкручены.
  2. Дроссель открыт на 100%.
  3. Отключена подача топлива.
  4. АКБ должна быть полностью заряжена. При этом емкости должно хватать на измерения компрессии во всех котлах.
  5. Стартер должен быть исправен, а на проводах его питания отсутствует значительное падение напряжение из-за окислов.